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Basic Idea

» Permutation tests are nonparametric hypothesis tests.
» Key assumption: under Hp, data labels are exchangeable.
» Construct the null distribution of a test statistic by permuting labels.

» Distribution-free: does not rely on normality or equal variance
assumptions, only on exchangeability.



Framework
Two-sample problem:
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Hy:F=G vs. Hi:F#G.

Compute observed statistic Tops.
Pool all samples {Z1,..., Zmin}-

Permute group labels, compute T().
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Property

Finite-sample Exactness
If samples are exchangeable under Hy,

]P)Ho(p S O[) S a,
i.e., permutation test is exact in finite samples.

Consistency
If the test statistic T is sensitive to differences, then as m, n — oo,

]PJHI(p — O) =1.



Extensions: Permutation-based FDR Control

Step 1: Observed rejections at threshold t:

R(t) = #{j : Tjobs > t}.

Step 2: Permutation null distribution.
> Permute Y (or residuals from reduced model).

» Recompute T ) for b = 1,...,B.

Step 3: Estimate false rejections:

V() =5 Z#{J ) > 1)

Step 4: Estimated FDR:




Extensions: Permutation-based FDR Control

Choose largest threshold t* such that

—

FDR(t") < o

Reject all H; with Tjops > t.

Advantages:
» No reliance on uniform null p-value assumption.
» Accounts for dependence among tests.

» Data-driven, robust in high-dimensional regression.



Extensions: Machine Learning Applications

» Permutation tests used for feature importance.
» Shuffle feature X;, break dependency with Y.

» Compute prediction loss increase:

I = E[((f (X, n(X))), V)] = E[(F(X), Y)]-

» If I; significantly > 0, feature X; is important.



Block Permutation(Kirch, 2007)

Goal: Testing for change points in dependent data.
AMOC Model (At Most One Change)

Xt:/l+d1{t>m}+et, t:].,...,n

» 1 baseline mean

> litsmy =0fort<m, lgyopmy =1fort>m

> e =) ;. o Wj€i—j, innovations ¢; are i.i.d. such that for some v > 2,
E(e;)) = 0,0 < E(€?) = 02 < o0, El€;|” < oo.

» Hy:m=nagainst Hy : m<n

Challenge: Observations are not exchangeable due to dependence and
change point.



Block Permutation(Kirch, 2007)

Idea:
» Divide data into L blocks of length K (KL=n),

B = (Xu-1k41,---»Xik), j=1,...,L

» Apply a random permutation m € Sk to the blocks:

X = (Bray, - -y Brgiy)-
» Preserves within-block dependence while breaking global order.

Permutation Statistic:

T{EK) = £(Brays - - -+ Briy)-



Block Permutation(Kirch, 2007)

Let Xi,...,X, be a (weakly dependent) series with sample mean X,
m
(1 = = — X = —
T,  max Sm ;(Xt X)), m=1,...,n—1

Define the permuted partial-sum process (for I =1,...,L, k=1,...,K
exclude (/, k) = (L, K)):

-1 K k
Sek(1 k) = Z Z(XK(W(;)A)H )+ Z Xk(n(h—1)+j — Xn),
i—1 j—1 =1

and the block-permuted T,El})< is

(1) _ LK ,
Tei(mX) = max )\/(K(I — 1)+ k) (LK — K(I—1) — k) (5001

(1K)A(LK



Block Permutation(Kirch, 2007)

Long-range variance:

Block-based estimator:

Under Hp, not rely to permutation ,

. 1 1 log log n _
#=72+0 <++ )+on1.
P\t vRT L (™)

Consistency requires K, L — oc.




Block Permutation(Kirch, 2007)

Define a(x) = v/2log x and 3(x) = 2log x + 3 loglog x —  log 7.
Under suitable mixing and moment conditions, under Hp,

| —x

P(ia( og n) TW - B(log n) > = exp(—2e ).
T

Assumptions.

» Weak dependence: strong mixing with suitable decay; finite moment
v >4

» Block growth: K = K(n) — oo, L = L(n) = oo, n= KL, and
K = O((log n)?) for some ~ > 0.

Conditioning on the data Xi.,, under Hy,

P(a(,l\Og n) TL(}B((W,X) — B(logn) < x ‘ Xl:,,) = exp(—2e7) as.

TLK



Roadmap of proof(Kirch, 2007)

» Define block sums and within-block residuals:

K

k
Ue = Z(XK(eA)H Xn), Z Xk(e-1)+j —
j=1 j=1

» For permutation 7

STI;’K(Ia k) = Z Uﬂ'(i) + R‘n’(/)(k)

within-block residual
block-level main term

» Normalized CUSUM:

W B LK
Tii(m X) = 'V,ix\/(K(/ — 1)+ k) (LK — K(I—1) — k)

Xn)

|SEX(1, k)] .



Roadmap of proof(Kirch, 2007)

» Under some condition, max; x |Ri(k)| < O,(vK) and

LK 1
\/(K(/ D)+ k) (LK~ K(1 - 1)~ k) 0 = © (ﬁ) '

> Conditioned on the observed block sums {U,}, permutation is a
without-replacement random shuffle of a finite population.

» Define the permutation bridge process:

L
S Uy = t 004 Us
L )
\/ Z/:l Ul2

» Under finite-population Lindeberg condition:
max; U?/ Zf-‘zl U? — 0, W, = B, a Brownian bridge.

1

Wi (t) = te€[0,1]




Roadmap of proof(Kirch, 2007)

. A P . . -
With 7 x — 7, the normalized block permutation statistic:

Tk X) VSO ML
LKk TLKﬂ teOl)\/ t(1—1t)
1B(1)]
te(0,1) /t(1 —t)
= Gumbel(x).




Roadmap of proof(Kirch, 2007)

Summary

>
| 4

Original time correlation: 7, captured by 71 .
Conditional on the observed block sums {U,}, the permutation
removes the dependence structure:

» Within-block: captured by U,.

» Across-block: controlled after permutation and asymptotic scaling.

Block-level maximum residuals vanish as L — oo, K — oo but
K/L— 0.

Conclusion: block permutation statistic (after normalization) has the
same limiting distribution as the original CUSUM statistic under Hp.



Problem and Motivation(Romano and Tirlea, 2022)

» Hy:p(1) =p(2) =--- = p(r) = 0 for some fixed r.
» Permutation tests may not control Type 1 error asymptotically; also
Type 3 (directional) errors.

» Test statistic: Sample autocorrelation

SIEXG = X)) (Ko — Xn)

ﬁn(k) == k

where X, = 1377 X, 62 =151 (X — X,)2
» Permutation distribution:

2 (t) = Z HTo(Xeyays - -+ s Xen(m) < th,

' ThESH

with S, be the permutation group of order n.



Preliminaries(Romano and Tirlea, 2022)

» Under a-mixing or m-dependence with moment conditions,

Va(pa(1) = p1) & N(0,43),

where 1
M= (= 20+ 1Y),

with

w? = Var(X?) + 2 Z Cov(X?, X?),

k>2
2 __
7 = Var(X1Xp) + 2 Cov(Xy Xz, Xk Xis1),
k>2
v = Cov(Xu X, XP) + D Cov(XZ, XiXi1) + D Cov(Xi Xa, X2).
k>2 k>2

» Variance components: k2, 72,1 capture long-run covariances.



Key Challenges(Romano and Tirlea, 2022)

» Zero autocorrelation # independence: Permutation invariance fails
under dependence.
» Asymptotic mismatch:
» Sample distribution under null is \/n(pn(1) — p1) 4, N(0,~3).
» Let Var(X;) = 1, under a-mixing and moments, permutation

distribution of /np,(1) converges in probability to ¢ (standard
normal CDF):

sup \R‘n(t) — ®(t)] 2 0.
teR

But sample variance is v # 1 in general.

» Studentize the statistic using consistent variance estimator 4?2
(— 71) to match distributions: \/n(p,(1) — p1)/42 (= N(0,1)).



Studentization(Romano and Tirlea, 2022)

> Let Y; = (X; — X,)(X
&[T

1= Xa) Zi= (X = Xa)2.
» Estimator 42 =

— 2pnbp + p2K2], with bandwidth

by = o(/n).
>
by, n—j _
Z(z 2+ 2303 (@ )2 20,
Jj=1 i=1
1 n—1 _ 2 by n—j—1 _
2= S VR 25 ST (Ve V) (Yis Vi),
i=1 j=1 i=1
. 1 n—1

» Uses truncated sums (b,) to estimate long-run variances under
dependence.



Main Results(Romano and Tirlea, 2022)

» Without permutation: we have that, as n — oo,
" . d
Vn(fn = p1)/An = N(0,1).

> Under permutation, 42 £ Var(X) = 1.

> Let I%,, be the permutation distribution, based on the test statistic
V/Npn/An. Then as n — oo,

sup |R,(t) — o(t)| & 0.
teR



Multiple Testing Framework(Romano and Tirlea, 2022)

» For Hy, : p(1) =--- = p(m) =0, combine individual permutation
tests using multiple testing procedures (e.g., Bonferroni: reject if
min; p; < a/r).

> let ¥ = (U",J')If,j:O with

o= Var(X1X1+,-) +2 EI>1 COV(X1X1+,', X/X/+,'), i=J
" COV(X1X1+,'7 X1X1+j) + Z/>1 (COV(X1X1+,‘, X/X/Jr,') + COV(X1X1+J‘, X/Xpr,')) NE-SN

Let A€ RUFV with Ay ; = —p1/o*, Ay = 1/0? for
i=1,---,r and other elements are 0. Then, as n — oo,

\/B ((ﬁla e 7ﬁr)T - (pla e apr)T) — N(O,ATZA)



Definition of Monotone Trend(Romano and Tirlea, 2024)

v

Data: time series (X,..., X,) from a weakly dependent process.
Distribution at time t: Fi(x) = P(X; < x).
Null hypothesis (strictly stationary):

Ho: FAR=F=---=F,
Alternative hypothesis (monotone trend):
Hi: F(x) 2 Fa(x) > - =2 Fa(x), Vx
or the reverse ordering.

Interpretation: distributions evolve monotonically over time in
stochastic order.



Main Results(Romano and Tirlea, 2024)

» Mann-Kendall statistic:
-1
Up = Un(X1, -+, Xp) = (g) Z 1(X; > X;) — 1(X; > X;).
1<i<j<n

» The l%(t) based on \/nU, stisfied, as n — oo,

sup |R,(t) — ®(3t/2)| & 0.

teR

» Suppose that the S-mixing coefficients of X, satisfy ), fxt < oc.
Let 02 =4/9+48/3 D k>1 Cov(Va, Vi) with Vi :=1—2F(X;), as
n — oo, B

@ 4, N(0,1).



Studentization(Romano and Tirlea, 2024)

» Let b, = o(y/n), and, as n — oo, b, — co. Difine

n—k

b,
+3 ZZ (1= 2B,06))(1 = 2F0(X;14)).

@\
\oo

> The R(t) based on /nU,/4? stisfied, as n — oo,

sup |R,(t) — d(t)| & 0.
teR

» Suppose that the 3-mixing coefficients of X, satisfy ), fxt < oc.
As n — oo,

\/sz 45 N(0,1).



Key point

> Permutation may lead to F(T,) # F(TT).
» Want to choose some static T, such that T,/6,~ TT/6T.

» Linear rank statistics:
Tn - Z Wi,nd)(ﬁn(xi))v
i=1

typically ¢(x) =1 — 2x.
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