Permutation Test in Dependent Data

Yu Xinyang

October 9, 2025

Outline

Permutation Test

Block Permutation

Studentization

Basic Idea

- ▶ Permutation tests are nonparametric hypothesis tests.
- \blacktriangleright Key assumption: under H_0 , data labels are **exchangeable**.
- Construct the null distribution of a test statistic by permuting labels.
- ▶ Distribution-free: does not rely on normality or equal variance assumptions, only on exchangeability.

Framework

Two-sample problem:

$$X_1,\ldots,X_m\sim F, \quad Y_1,\ldots,Y_n\sim G,$$

Test

$$H_0: F = G$$
 vs. $H_1: F \neq G$.

- 1. Compute observed statistic $T_{\rm obs}$.
- 2. Pool all samples $\{Z_1, \ldots, Z_{m+n}\}$.
- 3. Permute group labels, compute $T^{(b)}$.
- 4. Construct permutation distribution:

$$\hat{F}_{T}(t) = \frac{1}{B} \sum_{b=1}^{B} I(T^{(b)} \leq t).$$

5. Compute *p*-value:

$$p = \frac{1}{B} \sum_{b=1}^{B} I(T^{(b)} \geq T_{\text{obs}}).$$

Property

Finite-sample Exactness

If samples are exchangeable under H_0 ,

$$\mathbb{P}_{H_0}(p \leq \alpha) \leq \alpha,$$

i.e., permutation test is exact in finite samples.

Consistency

If the test statistic T is sensitive to differences, then as $m, n \to \infty$,

$$\mathbb{P}_{H_1}(\rho \to 0) = 1.$$

Extensions: Permutation-based FDR Control

Step 1: Observed rejections at threshold *t*:

$$R(t) = \#\{j: T_{j, \mathsf{obs}} \geq t\}.$$

Step 2: Permutation null distribution.

- Permute *Y* (or residuals from reduced model).
- ▶ Recompute $T_i^{(b)}$ for b = 1, ..., B.

Step 3: Estimate false rejections:

$$\hat{V}(t) = \frac{1}{B} \sum_{b=1}^{B} \#\{j : T_j^{(b)} \ge t\}.$$

Step 4: Estimated FDR:

$$\widehat{\mathsf{FDR}}(t) = \frac{\widehat{V}(t)}{R(t) \vee 1}.$$

Extensions: Permutation-based FDR Control

Choose largest threshold t^* such that

$$\widehat{\mathsf{FDR}}(t^*) \leq \alpha.$$

Reject all H_j with $T_{j,obs} \geq t^*$.

Advantages:

- ▶ No reliance on uniform null p-value assumption.
- Accounts for dependence among tests.
- Data-driven, robust in high-dimensional regression.

Extensions: Machine Learning Applications

- Permutation tests used for feature importance.
- ▶ Shuffle feature X_j , break dependency with Y.
- Compute prediction loss increase:

$$I_j = \mathbb{E}[\ell(\hat{f}(X_{-j}, \pi(X_j)), Y)] - \mathbb{E}[\ell(\hat{f}(X), Y)].$$

▶ If I_j significantly > 0, feature X_j is important.

Goal: Testing for change points in dependent data.

AMOC Model (At Most One Change)

$$X_t = \mu + d1_{\{t>m\}} + e_t, \quad t = 1, \dots, n$$

- $\blacktriangleright \mu$: baseline mean
- ▶ $1_{\{t>m\}} = 0$ for $t \le m$, $1_{\{t>m\}} = 1$ for t > m
- $e_i := \sum_{j>0} w_j \epsilon_{i-j}$, innovations ϵ_i are i.i.d. such that for some $\nu > 2$,

$$E(\epsilon_i) = 0, 0 < E(\epsilon_i^2) = \sigma^2 < \infty, E|\epsilon_i|^{\nu} < \infty.$$

 $ightharpoonup H_0: m = n \text{ against } H_1: m < n$

Challenge: Observations are not exchangeable due to dependence and change point.

Idea:

 \triangleright Divide data into L blocks of length K (KL=n),

$$B_{I} = (X_{(I-1)K+1}, \dots, X_{IK}), \quad j = 1, \dots, L.$$

▶ Apply a random permutation $\pi \in S_K$ to the blocks:

$$X^{(\pi)} = (B_{\pi(1)}, \ldots, B_{\pi(K)}).$$

Preserves within-block dependence while breaking global order.

Permutation Statistic:

$$T_n^{(L,K)} = f(B_{\pi(1)}, \ldots, B_{\pi(K)}).$$

Let X_1, \ldots, X_n be a (weakly dependent) series with sample mean \bar{X}_n

$$T_n^{(1)} = \max_{1 < m < n} \sqrt{\frac{n}{m(n-m)}} |S_m|, \quad S_m = \sum_{t=1}^m (X_t - \bar{X}_n), \ m = 1, \ldots, n-1.$$

Define the permuted partial-sum process (for $l=1,\ldots,L,\ k=1,\ldots,K$ exclude (l,k)=(L,K)):

$$S_{\pi}^{L,K}(I,k) = \sum_{i=1}^{I-1} \sum_{j=1}^{K} (X_{K(\pi(i)-1)+j} - \bar{X}_n) + \sum_{j=1}^{k} (X_{K(\pi(I)-1)+j} - \bar{X}_n),$$

and the block-permuted $T_{L,K}^{(1)}$ is

$$T_{L,K}^{(1)}(\pi,X) = \max_{\substack{l,k\\(l,k)\neq(l,K)}} \sqrt{\frac{LK}{(K(l-1)+k)(LK-K(l-1)-k)}} \left| S_{\pi}^{L,K}(l,k) \right|.$$

Long-range variance:

$$\tau^2 = \sigma^2 \left(\sum_{j \ge 0} w_j^2 \right).$$

Block-based estimator:

$$\hat{\tau}^2 = \frac{1}{n} \sum_{j=1}^K \left(\sum_{t \in B_j} (X_t - \bar{X}_n) \right)^2.$$

Under H_0 , not rely to permutation π ,

$$\hat{\tau}^2 = \tau^2 + O_P\left(\frac{1}{\sqrt{L}} + \frac{1}{\sqrt{K}} + \frac{\log\log n}{L}\right) + o(n^{-1}).$$

Consistency requires $K, L \to \infty$.

Define $\alpha(x) = \sqrt{2 \log x}$ and $\beta(x) = 2 \log x + \frac{1}{2} \log \log x - \frac{1}{2} \log \pi$. Under suitable mixing and moment conditions, under H_0 ,

$$P\left(\frac{\alpha(\log n)}{\tau} T_n^{(1)} - \beta(\log n)\right) \implies \exp(-2e^{-x}).$$

Assumptions.

- Weak dependence: strong mixing with suitable decay; finite moment $\nu > 4$.
- ▶ Block growth: $K = K(n) \to \infty$, $L = L(n) \to \infty$, n = KL, and $K = O((\log n)^{\gamma})$ for some $\gamma > 0$.

Conditioning on the data $X_{1:n}$, under H_0 ,

$$P\bigg(\frac{\alpha(\log n)}{\hat{\tau}_{L,K}} \ T_{L,K}^{(1)}(\pi,X) - \beta(\log n) \le x \ \Big| \ X_{1:n}\bigg) \implies \exp(-2e^{-x}) \quad \text{a.s.}.$$

Define block sums and within-block residuals:

$$U_{\ell} = \sum_{j=1}^{K} (X_{K(\ell-1)+j} - \bar{X}_n), \quad R_{\ell}(k) = \sum_{j=1}^{k} (X_{K(\ell-1)+j} - \bar{X}_n)$$

▶ For permutation π :

$$S_{\pi}^{L,K}(I,k) = \sum_{i=1}^{I-1} U_{\pi(i)} + \underbrace{R_{\pi(I)}(k)}_{\text{within-block residua}}$$

Normalized CUSUM:

$$T_{l,k}^{(1)}(\pi,X) = \max_{l,k} \sqrt{\frac{LK}{(K(l-1)+k)(LK-K(l-1)-k)}} \left| S_{\pi}^{L,K}(l,k) \right|.$$

▶ Under some condition, $\max_{l,k} |R_l(k)| \le O_p(\sqrt{K})$ and

$$\sqrt{\frac{LK}{(K(l-1)+k)\left(LK-K(l-1)-k\right)}}R_{\pi(l)}=O\left(\frac{1}{\sqrt{L}}\right).$$

- ▶ Conditioned on the observed block sums $\{U_\ell\}$, permutation is a without-replacement random shuffle of a finite population.
- ▶ Define the permutation bridge process:

$$W_L(t) = rac{\sum_{i=1}^{\lfloor Lt \rfloor} U_{\pi(i)} - t \sum_{i=1}^{L} U_i}{\sqrt{\sum_{i=1}^{L} U_i^2}}, \quad t \in [0,1]$$

Under finite-population Lindeberg condition: $\max_i U_i^2 / \sum_{i=1}^L U_i^2 \to 0$, $W_L \Rightarrow B$, a Brownian bridge.

With $\hat{\tau}_{L,K} \overset{P}{\to} \tau$, the normalized block permutation statistic:

$$\frac{T_{L,K}^{(1)}(\pi,X)}{\hat{\tau}_{L,K}} = \frac{\sqrt{\sum_{i} U_{i}}}{\hat{\tau}_{L,K}\sqrt{L}} \sup_{t \in (0,1)} \frac{|W_{L}(t)|}{\sqrt{t(1-t)}} + o_{p}(1)$$

$$\Rightarrow \sup_{t \in (0,1)} \frac{|B(t)|}{\sqrt{t(1-t)}}$$

$$\Rightarrow \text{Gumbel}(x).$$

Summary

- Original time correlation: τ , captured by $\hat{\tau}_{L,K}$.
- Conditional on the observed block sums $\{U_{\ell}\}$, the permutation removes the dependence structure:
 - ▶ Within-block: captured by U_{ℓ} .
 - Across-block: controlled after permutation and asymptotic scaling.
- ▶ Block-level maximum residuals vanish as $L \to \infty$, $K \to \infty$ but $K/L \to 0$.
- ightharpoonup Conclusion: block permutation statistic (after normalization) has the same limiting distribution as the original CUSUM statistic under H_0 .

Problem and Motivation(Romano and Tirlea, 2022)

- $H_0: \rho(1) = \rho(2) = \cdots = \rho(r) = 0$ for some fixed r.
- Permutation tests may not control Type 1 error asymptotically; also Type 3 (directional) errors.
- ► Test statistic: Sample autocorrelation

$$\hat{\rho}_n(k) = \frac{\frac{1}{n-k} \sum_{i=1}^{n-k} (X_i - \bar{X}_n) (X_{i+k} - \bar{X}_n)}{\hat{\sigma}_n^2},$$

where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

Permutation distribution:

$$\hat{R}^n_{T_n}(t) := \frac{1}{n!} \sum_{\pi_n \in S_n} I\{T_n(X_{\pi_n(1)}, \dots, X_{\pi_n(n)}) \leq t\},$$

with S_n be the permutation group of order n.

Preliminaries (Romano and Tirlea, 2022)

• Under α -mixing or m-dependence with moment conditions,

$$\sqrt{n}(\hat{\rho}_n(1) - \rho_1) \xrightarrow{d} \mathcal{N}(0, \gamma_1^2),$$

where

$$\gamma_1^2 = \frac{1}{\sigma^4} (\tau_1^2 - 2\rho_1 \nu_1 + \rho_1^2 \kappa^2),$$

with

$$\kappa^2 = \text{Var}(X_1^2) + 2 \sum_{k \ge 2} \text{Cov}(X_1^2, X_k^2),$$

$$\tau_1^2 = \mathrm{Var}(X_1 X_2) + 2 \sum_{k \geq 2} \mathrm{Cov}(X_1 X_2, X_k X_{k+1}),$$

$$\nu_1 = \operatorname{Cov}(X_1 X_2, X_1^2) + \sum_{k \geq 2} \operatorname{Cov}(X_1^2, X_k X_{k+1}) + \sum_{k \geq 2} \operatorname{Cov}(X_1 X_2, X_k^2).$$

▶ Variance components: κ^2 , τ_1^2 , ν_1 capture long-run covariances.

Key Challenges(Romano and Tirlea, 2022)

- ➤ Zero autocorrelation ≠ independence: Permutation invariance fails under dependence.
- ► Asymptotic mismatch:
 - ▶ Sample distribution under null is $\sqrt{n}(\hat{\rho}_n(1) \rho_1) \xrightarrow{d} N(0, \gamma_1^2)$.
 - Let $Var(X_i) = 1$, under α -mixing and moments, permutation distribution of $\sqrt{n}\hat{\rho}_n(1)$ converges in probability to Φ (standard normal CDF):

$$\sup_{t\in\mathbb{R}}|\hat{R}_n(t)-\Phi(t)|\xrightarrow{p}0.$$

But sample variance is $\gamma_1^2 \neq 1$ in general.

Studentize the statistic using consistent variance estimator $\hat{\gamma}_n^2$ $(\to \gamma_1)$ to match distributions: $\sqrt{n}(\hat{\rho}_n(1) - \rho_1)/\hat{\gamma}_n^2$ $(\to N(0,1))$.

Studentization(Romano and Tirlea, 2022)

- ▶ Let $Y_i = (X_i \bar{X}_n)(X_{i+1} \bar{X}_n)$, $Z_i = (X_i \bar{X}_n)^2$.
- Estimator $\hat{\gamma}_n^2 = \frac{1}{\hat{\sigma}_n^4} [\hat{T}_n^2 2\hat{\rho}_n \hat{\nu}_n + \hat{\rho}_n^2 \hat{K}_n^2]$, with bandwidth $b_n = o(\sqrt{n})$.

$$\begin{split} \hat{K}_{n}^{2} &= \frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n})^{2} + \frac{2}{n} \sum_{j=1}^{b_{n}} \sum_{i=1}^{n-j} (Z_{i} - \bar{Z}_{n})(Z_{i+j} - \bar{Z}_{n}), \\ \hat{T}_{n}^{2} &= \frac{1}{n} \sum_{i=1}^{n-1} (Y_{i} - \bar{Y}_{n})^{2} + \frac{2}{n} \sum_{j=1}^{b_{n}} \sum_{i=1}^{n-j-1} (Y_{i} - \bar{Y}_{n})(Y_{i+j} - \bar{Y}_{n}), \\ \hat{\nu}_{n} &= \frac{1}{n} \sum_{i=1}^{n-1} (Y_{i} - \bar{Y}_{n})(Z_{i} - \bar{Z}_{n}) + \frac{1}{n} \sum_{j=1}^{b_{n}} \sum_{i=1}^{n-j-1} (Z_{i} - \bar{Z}_{n})(Y_{i+j} - \bar{Y}_{n}) \\ &+ \frac{1}{n} \sum_{j=1}^{b_{n}} \sum_{i=1}^{n-j} (Y_{i} - \bar{Y}_{n})(Z_{i+j} - \bar{Z}_{n}). \end{split}$$

Uses truncated sums (b_n) to estimate long-run variances under dependence.

Main Results(Romano and Tirlea, 2022)

▶ Without permutation: we have that, as $n \to \infty$,

$$\sqrt{n}(\hat{\rho}_n - \rho_1)/\hat{\gamma}_n \xrightarrow{d} \mathcal{N}(0,1).$$

- ▶ Under permutation, $\hat{\gamma}_n^2 \xrightarrow{p} \text{Var}(X) = 1$.
- Let \hat{R}_n be the permutation distribution, based on the test statistic $\sqrt{n}\hat{\rho}_n/\hat{\gamma}_n$. Then as $n\to\infty$,

$$\sup_{t\in\mathbb{R}}|\hat{R}_n(t)-\Phi(t)|\stackrel{p}{\to} 0.$$

Multiple Testing Framework (Romano and Tirlea, 2022)

- For $H_m: \rho(1) = \cdots = \rho(m) = 0$, combine individual permutation tests using multiple testing procedures (e.g., Bonferroni: reject if $\min_i \hat{p}_i \leq \alpha/r$).
- ▶ Let $\Sigma = (\sigma_{i,j})_{i,j=0}^r$ with

$$\sigma_{i,j} = \begin{cases} \operatorname{Var}(X_1 X_{1+i}) + 2 \sum_{l>1} \operatorname{Cov}(X_1 X_{1+i}, X_l X_{l+i}), i = j \\ \operatorname{Cov}(X_1 X_{1+i}, X_1 X_{1+j}) + \sum_{l>1} \left(\operatorname{Cov}(X_1 X_{1+i}, X_l X_{l+j}) + \operatorname{Cov}(X_1 X_{1+j}, X_l X_{l+i}) \right), i \neq j. \end{cases}$$

Let $A \in R^{(r+1)*r}$ with $A_{1,i} = -\rho_1/\sigma^4$, $A_{i+1,i} = 1/\sigma^2$ for $i = 1, \dots, r$ and other elements are 0. Then, as $n \to \infty$,

$$\sqrt{n}\left((\hat{
ho}_1,\cdots,\hat{
ho}_r)^{\top}-(
ho_1,\cdots,
ho_r)^{\top}\right)
ightarrow\mathcal{N}(0,A^{\top}\Sigma A).$$

Definition of Monotone Trend(Romano and Tirlea, 2024)

- ▶ Data: time series $(X_1, ..., X_n)$ from a weakly dependent process.
- ▶ Distribution at time t: $F_t(x) = P(X_t \le x)$.
- Null hypothesis (strictly stationary):

$$H_0: F_1 = F_2 = \cdots = F_n.$$

► Alternative hypothesis (monotone trend):

$$H_1: F_1(x) \geq F_2(x) \geq \cdots \geq F_n(x), \forall x$$

or the reverse ordering.

Interpretation: distributions evolve monotonically over time in stochastic order.

Main Results(Romano and Tirlea, 2024)

Mann-Kendall statistic:

$$U_n = U_n(X_1, \dots, X_n) = \binom{n}{2}^{-1} \sum_{1 \leq i \leq j \leq n} I(X_j > X_i) - I(X_i > X_j).$$

▶ The $\hat{R}(t)$ based on $\sqrt{n}U_n$ stisfied, as $n \to \infty$,

$$\sup_{t\in\mathbb{R}}|\hat{R}_n(t)-\Phi(3t/2)|\xrightarrow{p}0.$$

Suppose that the β -mixing coefficients of X_n satisfy $\sum_t \beta_X t < \infty$. Let $\sigma^2 = 4/9 + 8/3 \sum_{k \ge 1} \operatorname{Cov}(V_1, V_{1+k})$ with $V_i := 1 - 2F(X_i)$, as $n \to \infty$,

$$\frac{\sqrt{n}U_n}{\sigma} \xrightarrow{d} \mathcal{N}(0,1).$$

Studentization(Romano and Tirlea, 2024)

▶ Let $b_n = o(\sqrt{n})$, and, as $n \to \infty$, $b_n \to \infty$. Difine

$$\hat{\sigma}_n^2 := \frac{4}{9} + \frac{8}{3} \sum_{k=1}^{b_n} \sum_{j=1}^{n-k} (1 - 2\hat{F}_n(X_j))(1 - 2\hat{F}_n(X_{j+k})).$$

▶ The $\hat{R}(t)$ based on $\sqrt{n}U_n/\hat{\sigma}^2$ stisfied, as $n \to \infty$,

$$\sup_{t\in\mathbb{R}}|\hat{R}_n(t)-\Phi(t)|\stackrel{p}{\to}0.$$

Suppose that the β -mixing coefficients of X_n satisfy $\sum_t \beta_X t < \infty$. As $n \to \infty$,

$$\frac{\sqrt{n}U_n}{\hat{\sigma}_n^2} \xrightarrow{d} \mathcal{N}(0,1).$$

Key point

- ▶ Permutation may lead to $F(T_n) \neq F(T_n^{\pi})$.
- ▶ Want to choose some static T_n such that $T_n/\hat{\sigma}_n \approx T_n^{\pi}/\hat{\sigma}_n^{\pi}$.
- Linear rank statistics:

$$T_n = \sum_{i=1}^n w_{i,n} \phi(\hat{F}_n(X_i)),$$

typically $\phi(x) = 1 - 2x$.

Reference

- Kirch, C. (2007). Block permutation principles for the change analysis of dependent data. *Journal of Statistical Planning and Inference*, 137(7):2453–2474.
- Romano, J. P. and Tirlea, M. A. (2022). Permutation testing for dependence in time series. *Journal of time series analysis*, 43(5):781–807.
- Romano, J. P. and Tirlea, M. A. (2024). Permutation testing for monotone "trend". *Journal of Time Series Analysis*.